Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza listy
Status:
Autorzy: Voroshchuk Victor, Shynkaryk Maria, Droździel Paweł, Kravets Oleh
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 2
Wolumen/Tom: 113
Strony: 136 - 149
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 31 grudnia 2025
Abstrakty: angielski
Introduction. A mathematical model is developed to describe the unsteady flow in the gap between the rotating and stationary elements of a rotor–pulsation apparatus. The model accounts for pressure pulsations and the non-Newtonian behavior of the processed material. Materials and methods. This study investigates the unsteady flow of a non-Newtonian curd mass in the rotor–stator gap of a rotor–pulsation apparatus using an axisymmetric model in cylindrical coordinates. The flow is governed by the continuity and Navier–Stokes equations, while rheology is described by the Herschel–Bulkley law with a structural parameter accounting for shear-induced breakdown and recovery. Pressure pulsations due to rotor–stator interaction are represented by a harmonic pressure-drop function, and the equations are solved using the finite-volume method in SolidWorks Flow Simulation with local mesh refinement in the rotor–stator gap. Results and discussion. The numerical results show that, in the rotor speed range of 2000–3500 revolutions per minute, an unsteady flow develops in the rotor–stator gap with a dominant tangential motion. Over a 3.5 s operating cycle, the mean tangential velocity increases with speed, whereas axial transport remains strongly pulsatory. Tangential velocity pulsations are about 3%, axial oscillations reach ~10% of the mean value, and the radial component remains secondary (1–3%). A systematic reduction in throughput is observed with increasing rotor speed: the mean flow rate decreases from 0.00156 to 0.00066 m³/s, and the processed volume per cycle from 0.00549 to 0.00229 m³/cycle. The flow rate exhibits periodic oscillations due to rotor–stator interaction; for a twelve-channel rotor, the pulsation frequency increases from approximately 400 to 700 Hz with an amplitude of 5–10% of the mean value. Energy demand increases with speed: the calculated torque rises from 1.13 to 1.98 N·m and power from 223 to 553 W. The nondimensional axial contribution decreases from 0.212 to 0.064, indicating a shift toward a predominantly tangential regime and explaining the reduced throughput. Comparison with experimental data confirms model adequacy, with discrepancies below 10% for power and below 20% for torque. Conclusions. An integrated unsteady-flow model for the rotor–stator gap was developed. The model captures the twelve-channel pressure pulsations in the frequency range of 400–700 Hz and predicts power consumption with an accuracy better than 10%. The proposed model can be used for hydrodynamic analysis and optimization of rotor-pulsation apparatus operating conditions.