Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
25
Lista A
Status:
Autorzy: Franus Wojciech, Wdowin Magdalena, Franus Małgorzata
Rok wydania: 2014
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 9
Wolumen/Tom: 186
Strony: 5721 - 5729
Web of Science® Times Cited: 166
Scopus® Cytowania: 192
Bazy: Web of Science | Scopus | Science Citation Index Expanded (SciSearch) | Wef of Science | PubMed/Medline | SCOPUS | EMBASE | Chemical Abstracts Service (CAS) | Google Scholar | EBSCO | CSA | ProQuest | CAB International | Academic OneFile | AGRICOLA | ASFA | Biological Abstracts | BIOSIS | CAB Abstracts | CSA Environmental Sciences | Current Contents/ Agriculture | Biology & Environmental Sciences | EI-Compendex | Elsevier Biobase | Environment Index | Food Science and Technology Abstracts | Gale | GeoArchive | Geobase | GeoRef | Global Health | INIS Atomindex | International Bibliography of Book Reviews (IBR) | International Bibliography of Periodical Literature (IBZ) | MathEDUC | OCLC | PASCAL | SCImago | Summon by ProQuest | Vitis - Viticulture and Enology Abstracts | Zoological Record
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm(3) of 3 mol center dot dm(-3) NaOH, 75 A degrees C), Na-P1 (20 g fly ash, 0.5 dm(3) of 3 mol A center dot dm(-3) NaOH, 95 A degrees C), and sodalite (20 g fly ash, 0.8 dm(3) of 5 mol A center dot dm(-3) NaOH + 0.4 dm(3) of 3 mol A center dot dm(-3) NaCl, 95 A degrees C). As synthesized materials were characterized to obtain mineral composition (X-ray diffractometry, Scanning electron microscopy-energy dispersive spectrometry), adsorption properties (Brunauer-Emmett-Teller surface area, N-2 isotherm adsorption/desorption), and ion exchange capacity. The most effective reaction for zeolite preparation was when sodalite was formed and the quantitative content of zeolite from X-ray diffractometry was 90 wt%, compared with 70 wt% for the Na-X and 75 wt% for the Na-P1. Residues from each synthesis reaction were the following: mullite, quartz, and the remains of amorphous aluminosilicate glass. The best zeolitic material as characterized by highest specific surface area was Na-X at almost 166 m(2) A center dot g(-1), while for the Na-P1 and sodalite it was 71 and 33 m(2) A center dot g(-1), respectively. The ion exchange capacity decreased in the following order: Na-X at 1.8 meq A center dot g(-1), Na-P1 at 0.72 meq A center dot g(-1), and sodalite at 0.56 meq A center dot g(-1). The resulting zeolites are competitive for commercially available materials and are used as ion exchangers in industrial wastewater and soil decontamination.