Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
30
Lista A
Status:
Autorzy: Warmińska Anna, Manoach Emil, Warmiński Jerzy, Samborski Sylwester
Rok wydania: 2015
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 4-5
Wolumen/Tom: 27
Strony: 719 - 737
Data nominalna: 2014
Impact Factor: 1,849
Web of Science® Times Cited: 17
Scopus® Cytowania: 19
Bazy: Web of Science | Scopus | Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Abstrakty: angielski
Dynamics of a Timoshenko beam under an influence of mechanical and thermal loadings is analysed in this paper. Nonlinear geometrical terms and a nonuniform heat distribution are taken into account in the considered model. The mathematical model is represented by a set of partial differential equations (PDEs) which takes into account thermal and mechanical loadings. The problem is simplified to two PDEs and then reduced to ordinary differential equations (ODEs) by means of the Galerkin method taking into account three modes of a linear Timoshenko beam. Correctness of the analytical model is verified by a finite element method. Then, the nonlinear model is studied numerically by a continuation method or by a direct numerical integration of ODEs. An effect of the temperature distribution on the resonance near the first natural frequency and on stability of the solutions is presented. The increase of mechanical loading results in hardening of the resonance curve. Thermal loading may stabilise the beam dynamics when the temperature is decreased. The elevated temperature may transit dynamics from regular to chaotic oscillations.