Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
A gas sensor array consisting of eight metal oxide semiconductor (MOS) type
gas sensors was evaluated for its ability for assessment of the selected wastewater
parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP)
in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor
(SBR). A comparison of the gas sensor array (electronic nose) response to the standard
physical-chemical parameters of treated wastewater was performed. To analyze the
measurement results, artificial neural networks were used. E-nose—gas sensors array and
artificial neural networks proved to be a suitable method for the monitoring of treated
wastewater quality. Neural networks used for data validation showed high correlation
between the electronic nose readouts and: (I) chemical oxygen demand (COD) (r = 0.988);
(II) total suspended solids (TSS) (r = 0.938); (III) turbidity (r = 0.940); (IV) pH
(r = 0.554); (V) nitrogen compounds: N-NO3 (r = 0.958), N-NO2 (r = 0.869) and N-NH3
(r = 0.978); (VI) and volatile organic compounds (VOC) (r = 0.987). Good correlation of the
abovementioned parameters are observed under stable treatment conditions in a laboratory
batch reactor.