Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
30
Lista A
Status:
Autorzy: Mazurkiewicz Dariusz
Rok wydania: 2015
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 2
Wolumen/Tom: 15
Strony: 412 - 418
Impact Factor: 2,194
Web of Science® Times Cited: 46
Scopus® Cytowania: 54
Bazy: Web of Science | Scopus | Baztech | WoS | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
n recent years, conveyor belt transport systems have taken on a new significance due to numerous research studies on innovative design solutions. The application of these new developed solutions leads to considerable reduction in operational costs of transport systems, while ensuring their high reliability and service life at the same time. Nonetheless, there are still areas that pose challenge to both research and development. Typical challenges are analyzed in this paper. The solution to the problems of conveyor transport maintenance can be the implementation of a system for estimation of technical condition of conveyor belt joints. It serves as a second level safety diagnostic system for transport. Besides real-time measurements, the system enables a long-term analysis of historic data for every single joint that makes up the conveyor belt loop, from the moment of its manufacture to the final operation. The effectiveness of a conveyor belt diagnostic system primarily depends on the use of a decision supporting system. With adequate inference rules applied, this system would increase the effectiveness and shorten the time of decision-making as well as verify generated signals. The above tasks can be performed by a suitable expert system that predicts values of the analyzed time series, using the predicted values and inference rules to verify any potential false alarm signals at the same time. The idea and algorithm of such an expert system were presented in this article as well.