Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
40
Lista A
Status:
Autorzy: Urbaniak Mariusz, Teter Andrzej, Kubiak Tomasz
Rok wydania: 2015
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 134
Strony: 199 - 208
Impact Factor: 3,853
Web of Science® Times Cited: 46
Scopus® Cytowania: 50
Bazy: Web of Science | Scopus | Web of Science Core Collection | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
The paper deals with experimental investigation and numerical analysis on influence of boundary conditions on critical load, post-buckling behaviour and failure load of compressed composite channel-section columns. The columns were made of 8-ply glass–epoxy laminate. The six different layers arrangement were considered. Tests were conducted using two test stands. In the first of them, special self-aligning grips with spherical bearings were used. In the second stand contains a stiff plate and a table. The stiff plate was mounted to the upper jaw and has only one degree of freedom (vertical movement). The table with spherical bearing which is mounted in the bottom jaw has 3 DOF (rotations about three perpendicular axes). The strain-gauges technique has been used for all tested specimens. Additionally the second stand has been equipped with the ARAMIS system for non-contact 3D displacement measurements. Numerical analysis was conducted using ANSYS software. Two models were prepared with boundary conditions corresponding to test stands. The critical load values were determined using following methods: the load vs. square of strain difference P−(ε1−ε2)2, the load vs. strain difference P−(ε1−ε2) curve inflection point method. To the failure load estimation the Tsai-Wu criterion and maximum stress criterion have been applied.