Covering problems for functions n-fold symmetric and convex in the direction of the real Axis II
Artykuł w czasopiśmie
MNiSW
25
Lista A
Status: | |
Autorzy: | Koczan Leopold, Zaprawa Paweł |
Rok wydania: | 2015 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 4 |
Wolumen/Tom: | 38 |
Strony: | 1637 - 1655 |
Impact Factor: | 0,64 |
Web of Science® Times Cited: | 2 |
Scopus® Cytowania: | 2 |
Bazy: | Web of Science | Scopus | Science Citation Index Expanded (SciSearch) | Journal Citation Reports/Science Edition | Scopus | Zentralblatt MATH | Google Scholar | Academic Search | CSA Environmental Sciences | Current Index to Statistics | Mathematical Reviews/MathSciNet (Reference List Journal) | OCLC | SCImago | Summon by ProQuest | TOC Premier |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Otwarte czasopismo |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Abstrakty: | angielski |
Let F denote the class of all functions univalent in the unit disk Delta equivalent to {zeta is an element of C : vertical bar zeta vertical bar < 1} and convex in the direction of the real axis. The paper deals with the subclass F-(n) of these functions f which satisfy the property f (epsilon z) = epsilon f (z) for all z is an element of Delta, where epsilon = e(2 pi i/n). The functions of this subclass are called n-fold symmetric. For F-(n), where n is odd positive integer, the following sets, boolean AND (f is an element of F(n)) f(Delta)-the Koebe set and boolean OR (f is an element of F(n)) f (Delta)-the covering set, are discussed. As corollaries, we derive the Koebe and the covering constants for F-(n). |