The reliability model for failure cause analysis of pressure vessel protective fittings with taking into account load-sharing effect between valves
Artykuł w czasopiśmie
MNiSW
11
Lista B
Status: | |
Warianty tytułu: |
Model niezawodności przyczyn uszkodzeń armatury ochronnej zbiornika ciśnieniowego z uwzględnieniem efektu podziału obciążenia pomiędzy zaworami
|
Autorzy: | Stefanovych Tetyana, Shcherbovskykh Serhiy, Droździel Paweł |
Rok wydania: | 2015 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 4 |
Wolumen/Tom: | 16 |
Strony: | 17 - 24 |
Bazy: | BazTech |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Abstrakty: | polski | angielski |
W artykule przedstawiono model niezawodności armatury ochronnej zbiorników ciśnieniowych. Opracowany model przeznaczony jest do analizy ilościowej przyczyn awarii systemów takiego typu. Niezawodność systemu jest sformalizowana przez dynamiczne drzewa niesprawności, w których zjawiska podziału obciążenia zostały opisane matematycznie. Podział jednorodnego modelu Markowa otrzymywano za pomocą dynamicznego drzewa niesprawności. Otrzymane charakterystyki niezawodności obliczano na podstawie tak przyjętego modelu Markowa. Niezawodność elementów ochronnych armatury odpowiada rozkładowi Weibulla z uwzględnieniem podziału tensora tego modelu Markowa. Rezultatem wykonanych symulacji jest rodzina krzywych prawdopodobieństwa, uzyskana dla różnych wartości współczynnika podziału obciążenia. W artykule pokazano także jak zmienia się główna przyczyna awarii analizowanego systemu wraz z przebiegiem wartości tego współczynnika | |
In the paper reliability model for pressure vessel protective fittings is developed. The model is intended for the quantitative analysis of failure causes of such system. Reliability of the system is formalized by the dynamic fault tree in which load-sharing phenomena are mathematically described. Using the dynamic fault tree the split homogeneous Markov model is obtained. Reliability characteristics are calculated based on the Markov model. Life of protective fittings components is distributed by Weibull that provided by tensor splitting of Markov model. The result of the simulation is probability curve family obtained for different values of load-sharing coefficients. It is shown how the main cause of system failure changing with these coefficients changing |