Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
30
Lista A
Status:
Autorzy: Iurchenko Anton , Borc Jarosław, Sangwal Keshra, Voronov Alexei
Rok wydania: 2016
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 170
Strony: 276 - 284
Web of Science® Times Cited: 5
Scopus® Cytowania: 5
Bazy: Web of Science | Scopus | Web of Science Core Collection
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
The Vickers microhardness HV of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness HV of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H0, is 2337 MPa for LDP, and (4) the value of fracture toughness KC of LDP crystals lies between 4.7 and 12 MPa m1/2. The load-independent hardness H0 of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness KC is higher by factor of about 20 than that of undoped KDP crystals