Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Status:
Autorzy: Suchorab Zbigniew, Guz Łukasz, Łagód Grzegorz, Sobczuk Henryk
Rok wydania: 2015
Wersja dokumentu: Drukowana
Język: angielski
Wolumen/Tom: 1126
Strony: 161 - 168
Bazy: Index Copernicus Journals Master List | Inspec | EBSCO
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Mould risk is an increasing problem in current housing branch. Mould is considered to be one of the most important features of Sick Building Syndrome. In most cases it is caused by the increased moisture of building barriers and improper humidity of indoor air. In old buildings it is caused by improper raising techniques, lack of isolation against moisture and insufficient building materials applied for construction. Modern housing also suffers problem of mould risk which is connected to introducing of the new materials and technologies for external envelopes of the buildings. These often increase the tightness of the buildings and cause improper performance of natural ventilation systems, which makes suitable conditions for mould to grow.In the paper there is proposed an attempt to evaluate mould risk in the buildings using e-nose, being a gas sensors array which consists of eight metal oxide semiconductor (MOS) gas sensors. This device is commonly applied for air quality assessment in environmental research. First part of the article is a description of e-nose technology and its possible applications in constructions. The second part shows the exemplary e-nose readouts of indoor air sampled in clean reference rooms and threatened with mould development. Obtained multivariate data are processed and visualized using a Principal Component Analysis (PCA)