Anti-Ramsey numbers in complete split graphs
Materiały konferencyjne
MNiSW
25
Lista A
Status: | |
Autorzy: | Gorgol Izolda |
Rok wydania: | 2016 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 7 |
Wolumen/Tom: | 339 |
Strony: | 1944 - 1949 |
Impact Factor: | 0,639 |
Web of Science® Times Cited: | 14 |
Scopus® Cytowania: | 14 |
Bazy: | Web of Science | Scopus | Web of Science Core Collection | MatSciNet | Science Direct |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | 7th Cracow Conference on Graph Theory |
Termin konferencji: | 14 września 2014 do 19 września 2014 |
Miasto konferencji: | Rytro |
Państwo konferencji: | POLSKA |
Publikacja OA: | NIE |
Abstrakty: | angielski |
A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. The anti-Ramsey number ar(G,H)ar(G,H) is the maximum number of colors in an edge-coloring of GG with no rainbow copy of HH. Anti-Ramsey numbers were introduced by Erdős et al. (1973) and studied in numerous papers. Originally a complete graph was considered as GG, but afterwards also other graphs were used as host graphs. We consider a complete split graph as the host graph and discuss some results for the graph HH containing short cycles or triangles with pendant edges. Among others we show that View the MathML sourcear(Kn+Ks¯,C3+)=ar(Kn+Ks¯,C3)=n+s−1 for n,s≥1n,s≥1, where View the MathML sourceC3+ denotes a triangle with a pendant edge. |