An approach to complete convergence theorems for dependent random fields via application of Fuk-Nagaev inequality
Artykuł w czasopiśmie
MNiSW
35
Lista A
Status: | |
Autorzy: | Łagodowski Zbigniew |
Rok wydania: | 2016 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 1 |
Wolumen/Tom: | 437 |
Strony: | 380 - 395 |
Impact Factor: | 1,064 |
Web of Science® Times Cited: | 5 |
Scopus® Cytowania: | 5 |
Bazy: | Web of Science | Scopus | Web of Science Core Collection | Science Direct |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
Let {X-n, n is an element of N-d} be a random field i.e. a family of random variables indexed by N-d, d >= 2. Complete convergence, convergence rates for non -identically distributed, negatively dependent and martingale random fields are studied by application of Flak Nagaev inequality. The results are proved in asymmetric convergence case i.e. for the norming sequence equal n(1)(alpha 1), n(2)(alpha 2) , ... , n(d)(alpha d) where (n(1), n(2),...n(d)) = n is an element of N-d and min(1 <= i <= d) alpha(i) >= 1/2 (C) 2015 Elsevier Inc. All rights reserved. |