Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
40
Lista A
Status:
Autorzy: Gajewski Jakub, Golewski Przemysław, Sadowski Tomasz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2017
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 1
Wolumen/Tom: 159
Strony: 589 - 599
Impact Factor: 4,101
Web of Science® Times Cited: 32
Scopus® Cytowania: 32
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
One of the fundamental criteria in the design of air structures is to achieve required strength at the highest possible reduction of structure weight w. However, it is necessary to keep the second design parameter i.e. stiffness of the air structural element on the proper level in order to satisfy durability and reliability of aircrafts. This paper presents the application of an integrated system based on artificial neural networks and calculations by the finite element method (FEM) for the optimization of geometry of a thin-walled element of an air structure. The main criterion of optimization was to reduce the structure’s weight w at the lowest possible deformation (high stress level) of the tested object. The objective of the analyses – using artificial neural networks (ANN) – was to investigate the effect of 4 individual variables defining geometry of the model (including: system of ribs and their inclination, system of holes in ribs and side walls) on its deformation and final value of the reduced weight w. Numerical analysis showed that the most important variable is the diameter of holes in the side walls of the model.