Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
14
Lista B
Status:
Autorzy: Poddenezhny Evgheni N. , Drobishevskaya Natalie E. , Mazanik Aleksander V. , Korolik Olga V., Fedotov Aleksander S., Fedotov Aleksander K., Svito Ivan A., Kołtunowicz Tomasz
Rok wydania: 2016
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 11
Wolumen/Tom: 92
Strony: 232 - 235
Scopus® Cytowania: 4
Bazy: Scopus | EBSCO | INSPEC | BazTech
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Abstrakty: angielski
In our work, we studied zinc oxide ceramic samples doped with aluminum and gallium. Structure peculiarities of ceramics depending on their synthesis regime were investigated by the SEM, EDX, XRD, and Raman spectroscopy methods. It was demonstrated that at some technological conditions the formation of indesirable phases of zinc aluminate or gallate may occur preventing an uniform mater ial doping and reducing quality of samples. Single-phase ZnO ceramics were produced when the nanostructured alumina powders were used as a dopant source. The correlations between the synthesis regimes of ZnO ceramics and their electrophysical parameters essential for thermoelectric figure-of-merit (electrical conductivity and Seebeck coefficient) have been established. The best electrophysical characteristics were obtained when the nanostructured alumina produced by combustion in isopropyl alcohol was used as a dopant. Conductivity and Seebeck coefficient of such ceramics are equal to 3·103S/m and -0.27 mV/K, respectively, corresponding to the power factor of 2.2·10-4W/(m·K2).