Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
25
Lista A
Status:
Autorzy: Sikora Jan, Polakowski Krzysztof, Pańczyk Beata
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2017
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 9
Wolumen/Tom: 32
Strony: 761 - 768
Impact Factor: 0,59
Web of Science® Times Cited: 2
Scopus® Cytowania: 2
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
This paper presents a method of regularization for the numerical calculation of improper integrals used in different formulations of Boundary Element Method (BEM). The main attention of the readers we would like to focus on Fourier Formulation of BEM. The singular integrals arise when for discretization the elements of a higher order than zero are used. Very often in the Diffusive Optical Tomography for infant head modeling, triangular or square curvilinear boundary elements of the second order are used [12,14], hence, our interest in the subject of effective and accurate calculation of singular integrals. Even for the classical formulation of BEM such a problem is extremely difficult [1]. Some authors believe that the practical application possesses only flat triangular boundary elements of zero-order, and although there is some truth in this statement, the elements of the second order show a significant advantage [10,12] in Diffusion Optical Tomography (DOT) for example. This issue becomes even more interesting when we deal with the Galerkin BEM formulation offering the possibility of matrix of coefficients symmetrisation, which has fundamental importance for inverse problems. This matter becomes critical when we start to consider the Fourier BEM formulation, introduced by Duddeck [5]. His approach provides the possibility of a solution in the case which has no fundamental solution. The light propagation, which is described by the Boltzmann equation (see Arridge [2]) is such a case. Currently and most commonly, the Boltzmann equation is approximated by the diffusion equation in strongly light scattering media [10]. In the author's opinion, the problem of numerical integration of improper integrals has not yet been fully exhausted in the classic and Galerkin BEM formulation but the Fourier BEM formulation still expects the proposals of the effective solutions. Such an offer we would like to present in this paper.