Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
15
WOS
Status:
Autorzy: Borys Magdalena, Barakate Sara, Hachmoud Karim, Plechawska-Wójcik Małgorzata, Krukow Paweł, Kamiński Marek
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2017
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 15
Numer artykułu: 2002
Strony: 1 - 7
Web of Science® Times Cited: 3
Bazy: Web of Science | Google Scholar | EBSCO
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: 2nd International Conference of Computational Methods in Engineering Science
Skrócona nazwa konferencji: CMES’17
URL serii konferencji: LINK
Termin konferencji: 23 listopada 2017 do 25 listopada 2017
Miasto konferencji: Lublin
Państwo konferencji: POLSKA
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 15 grudnia 2017
Abstrakty: angielski
Cognitive assessment in neurological diseases represents a relevant topic due to its diagnostic significance in detecting disease, but also in assessing progress of the treatment. Computer-based tests provide objective and accurate cognitive skills and capacity measures. The Ruff Figural Fluency Test (RFFT) provides information about non-verbal capacity for initiation, planning, and divergent reasoning. The traditional paper form of the test was transformed into a computer application and examined. The RFFT was applied in an experiment performed among 70 male students to assess their cognitive performance in the laboratory environment. Each student was examined in three sequential series. Besides the students’ performances measured by using in app keylogging, the eye-tracking data obtained by non-invasive video-based oculography were gathered, from which several features were extracted. Eye-tracking features combined with performance measures (a total number of designs and/or error ratio) were applied in machine learning classification. Various classification algorithms were applied, and their accuracy, specificity, sensitivity and performance were compared.