Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
11
Lista B
Status:
Warianty tytułu:
Charakterystyka międzywarstwy GFRP jako warstwy izolacyjnej w laminacie Al/CFRP
Autorzy: Surowska Barbara, Ostapiuk Monika
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2017
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 4
Wolumen/Tom: 17
Strony: 232 - 237
Web of Science® Times Cited: 1
Bazy: Web of Science
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 28 stycznia 2017
Abstrakty: polski | angielski
Kompozyty polimerowe wzmacniane włóknem węglowym (CFRP) są atrakcyjnym materiałem konstrukcyjnym o coraz szerszym zastosowaniu, w tym w lotnictwie. Łączenie ich z elementami metalowymi oraz wytwarzanie laminatów metalowo--włóknistych (FML) pozwala na uzyskanie wyższych właściwości mechanicznych od połączeń z kompozytem wzmacnianym włóknem szklanym (GFRP). Niestety, dla połączeń z aluminium i jego stopami, stalą nierdzewną, stopami magnezu problemem jest korozja galwaniczna, ponieważ kompozyty CFRP są przewodnikami prądu. Do łączenia technologią klejenia stosuje się kleje o coraz wyższej rezystywności. FML przeznaczone zwłaszcza na lotnicze struktury pierwszorzędowe (ang. aircraft primery structures) muszą nie tylko być odporne na korozję, ale przede wszystkim muszą mieć odpowiedni zestaw właściwości mechanicznych, w tym zmęczeniowych. Dlatego projektowanie obróbki powierzchni metalu i rodzaju międzywarstw musi uwzględniać adhezję połączenia, właściwości mechaniczne hybrydowego laminatu i właściwości korozyjne. W artykule przedstawiono badania mikrostruktury interfejsu: warstwa anodowa na stopie aluminium AA 2024-międzywarstwa GFRP-CFRP laminatów hybrydowych o właściwościach elektrycznych przedstawionych we wcześniejszej publikacji. Obserwacje wykonano na przekrojach laminatów Al/GFRP-R/CFRP, Al/GFRP-S/CFRP oraz Al/CFRP w układzie 2/1 z włóknem w kierunku 0°. Ponadto wykonano pomiar impedancji dla warstwy tlenkowej w kontakcie z 3.5% wodnym roztworem NaCl metodą elektrochemicznej spektroskopii impedancyjnej (EIS). Stwierdzono, że przyczyną niskiej rezystywności kontaktowej laminatu z międzywarstwą GFRP-S była migracja włókna węglowego do granicy Al/GFRP-S. Ponadto niska rezystancja powierzchniowa kompozytu CFRP i porowatość zewnętrznej części warstwy tlenkowej na aluminium umożliwia dyfuzję agresywnych jonów i wędrówkę ładunku elektrycznego w kierunku podłoża metalowego, co stwarza zagrożenie inicjowania korozji w warunkach kondensacji wilgoci.
Carbon fibre reinforced polymers (CFRPs) are an attractive construction mater ial with an increasingly wide scope of application, including the aircraft industry. By combining them with metal elements and producing fibre metal laminates (FMLs), it is possible to achieve higher mechanical properties than in the case of combinations with glass fibre reinforced polymer (GFRP). However, there is a problem associated with galvanic corrosion regarding combinations with aluminium and its alloys, stainless steel and with magnesium alloys because CFRP composites are electrical conductors. Adhesives with increasingly higher resistivity are applied in adhesive bonding technology. Fibre metal laminates (FMLs), particularly those dedicated for aircraft primary structures must be not only corrosion resistant, but first of all they must be characterized by a proper combination of mechanical properties, including fatigue feature s. Therefore, when designing the metal surface treatment and the type of interlayers, it is necessary to consider the joint adhesion, mechanical properties of the hybrid laminate and corrosion properties. This article presents the characte rization of an interface microstructure: the anodic layer on the AA 2024 aluminium alloy-GFRP-CFRP interlayer of hybrid laminates with electr ical properties presented in a previous publication. The observations have been carried out on cross-s ections of Al/GFRP-R/CFRP, Al/GFRP-S/CFRP and Al/CFRP laminates in a 2/1 layout with fibres oriented in the 0° direction. Moreover, impedance measurement was performed for the oxide layer in contact with a 3.5% aqueous NaCl solution by means of electrochemical impedance spectroscopy (EIS). It has been found that the low contact resistivity between the laminate with the GFRP-S interlayer was caused by carbon fibre migration to the Al/GFRP-S boundary. Furthermore, the low surface resistance of the CFRP composite and the porosity of the outer part of the oxide layer on aluminium enables the diffusion of aggressive ions and migration of electrical charge towards the metal substrate, which poses a threat of corrosion initiation in mois ture condensation conditions.