Optimisation of milling parameters using neural network
Materiały konferencyjne
MNiSW
15
WOS
Status: | |
Autorzy: | Lipski Jerzy, Zaleski Kazimierz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2017 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Wolumen/Tom: | 15 |
Strony: | 1 - 6 |
Web of Science® Times Cited: | 8 |
Bazy: | Web of Science |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | 2nd International Conference of Computational Methods in Engineering Science |
Skrócona nazwa konferencji: | CMES’17 |
URL serii konferencji: | LINK |
Termin konferencji: | 23 listopada 2017 do 25 listopada 2017 |
Miasto konferencji: | Lublin |
Państwo konferencji: | POLSKA |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Otwarte czasopismo |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 15 grudnia 2017 |
Abstrakty: | angielski |
The purpose of this study was to design and test an intelligent computer software developed with the purpose of increasing average productivity of milling not compromising the design features of the final product. The developed system generates optimal milling parameters based on the extent of tool wear. The introduced optimisation algorithm employs a multilayer model of a milling process developed in the artificial neural network. The input parameters for model training are the following: cutting speed vc, feed per tooth fz and the degree of tool wear measured by means of localised flank wear (VB3). The output parameter is the surface roughness of a machined surface Ra. Since the model in the neural network exhibits good approximation of functional relationships, it was applied to determine optimal milling parameters in changeable tool wear conditions (VB3) and stabilisation of surface roughness parameter Ra. Our solution enables constant control over surface roughness parameters and productivity of milling process after each assessment of tool condition. The recommended parameters, i.e. those which applied in milling ensure desired surface roughness and maximal productivity, are selected from all the parameters generated by the model. The developed software may constitute an expert system supporting a milling machine operator. In addition, the application may be installed on a mobile device (smartphone), connected to a tool wear diagnostics instrument and the machine tool controller in order to supply updated optimal parameters of milling. The presented solution facilitates tool life optimisation and decreasing tool change costs, particularly during prolonged operation. |