Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
15
Lista A
Status:
Autorzy: Bondariev Vitalii, Żukowski Paweł, Luhin Valery G., Voitov Igor V.
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2017
Wersja dokumentu: Drukowana | Elektroniczna
Arkusze wydawnicze: 0,58
Język: angielski
Numer czasopisma: 4
Wolumen/Tom: 21
Strony: 289 - 298
Scopus® Cytowania: 8
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
This paper presents results of thermogravimetric-DTG/DSC study of the results of the TEM and EDX analysis of the structure and composition of the metal–dielectric (FeCoZr)x(CaF2)(100–x) nanocomposite. A number of nanocomposite samples were produced by ion-beam sputtering in a pure argon atmosphere. The TG analysis showed that the mass of the nanocomposite changes in two stages. The first stage, a decrease, is related to the evaporation of moisture and other volatiles from the surface of the sample that settle on it during storage. Then, a rapid increase in the mass is related to the oxidation of the metallic phase. The heating of samples at a higher temperature (T > 620°C) leads to the formation of an oxide layer on the surface of the metallic phase nanoparticles which consist of Fe and Co. The number of oxygen atoms per atom of the metallic phase increases with the metallic phase content x of samples and for x = 45.4 at.% it reaches about 0.75, for x = 57 at.% it is about 0.98, and for x = 68 at.% it is about 1.08. On this basis, a structural-phase model of the state of nanograin layers after high-temperature treatments was proposed.