Distributed microcracking process of WC/Co cermet under dynamic impulse compressive loading
Artykuł w czasopiśmie
MNiSW
40
Lista A
Status: | |
Autorzy: | Postek Eligiusz, Sadowski Tomasz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2018 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Wolumen/Tom: | 194 |
Strony: | 494 - 508 |
Impact Factor: | 4,829 |
Web of Science® Times Cited: | 12 |
Scopus® Cytowania: | 13 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
Cermet Materials (CM), for example, WC/Co, have very good mechanical, thermal and wear properties. They are used for manufacturing of cutting tools. However, their behavior under dynamic loads is still not properly understood. Experiments, e.g. Siegl and Fischmester (1988) and Ravichandran (1994), indicate that the fracture energy of WC/Co is expended through ductile failure of the Co: (1) close to the binder/tungsten carbide interface (Liu et al., 2017) [64] or by (2) dimple rupture across the interphase (Sigl and Exner, 1987) [22]. Stress concentrations around grain boundaries lead to initiation of microcracks which are dispersed by dynamic loading. The main goal of the paper is to investigate the previously formulated models of the two-phase composite (Sadowski et al., 2005, 2006, 2007; Debski and Sadowski, 2014, 2017) [47-51] in the case of dynamic compressive pulses that are common in the case of cutting tools. We have taken into account complex spatial distribution of cermet phases, grain/binder interfaces modeled by interface elements, possibility of cracks appearance within binders using interface elements as well, and rotation of brittle grains. The obtained results show that microcracking process and stress distributions are different for quasi-static and dynamic loadings. Early development of microcracks distribution revealed by damage parameter was observed. |