Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
1
spoza listy
Status:
Warianty tytułu:
Effectiveness of artificial neural networks in recognising handwriting characters
Autorzy: Miłosz Marek, Gazda Janusz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2018
Wersja dokumentu: Elektroniczna
Język: polski
Wolumen/Tom: 7
Strony: 210 - 214
Bazy: Baztech
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 30 września 2018
Abstrakty: polski | angielski
Sztuczne sieci neuronowe są jednym z narzędzi współczesnych systemów odtwarzania z obrazów tekstów, w tym pisanych odręcznie. W artykule przedstawiono rezultaty eksperymentu obliczeniowego mające go na celu analizę jakości rozpoznawania cyfr pisanych odręcznie przez dwie sztuczne sieci neuronowe (SSN) o różnej architekturze i para metrach. Jako podstawowe kryterium jakości rozpoznawania znaków użyto wskaźnika poprawności. Poza tym analizie poddano liczbę neuronów i ich warstw oraz czas uczenia SSN. Do stworzenia SSN, oprogramowania algorytmów ich uczenia i testowania wykorzystano język Python i bibliotekę TensorFlow. Obydwie SSN uczono i testowano przy pomocy tych samych dużych zbiorów obrazów znaków pisanych odręcznie.
Artificial neural networks are one of the tools of modern text recognising systems from images, including handwritten ones. The article presents the results of a computational experiment aimed at analyzing the quality of recognition of handwritten digits by two artificial neural networks (ANNs) with different architecture and parameters. The correctness indicator was used as the basic criterion for the quality of character recognition. In addition, the number of neurons and their layers and the ANNs learning time were analyzed. The Python language and the TensorFlow library were used to create the ANNs, and software for their learning and testing. Both ANNs were learned and tested using the same big sets of images of handwritten characters.