Asymptotics of the Lebowitz-Rubinow-Rotenberg model of population development
Artykuł w czasopiśmie
MNiSW
100
Lista 2021
Status: | |
Autorzy: | Gregosiewicz Adam |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2019 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 6 |
Wolumen/Tom: | 24 |
Strony: | 2443 - 2472 |
Impact Factor: | 1,27 |
Web of Science® Times Cited: | 0 |
Scopus® Cytowania: | 1 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Otwarte czasopismo |
Wersja tekstu: | Ostateczna wersja autorska |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 1 czerwca 2019 |
Abstrakty: | angielski |
We study a mathematical model of cell populations dynamics proposed by J. Lebowitz and S. Rubinow, and analysed by M. Rotenberg. Here, a cell is characterized by her maturity and speed of maturation. The growth of cell populations is described by a partial differential equation with a boundary condition. In the first part of the paper we exploit semigroup theory approach and apply Lord Kelvin's method of images in order to give a new proof that the model is well posed. A semi-explicit formula for the semigroup related to the model obtained by the method of images allows two types of new results. First of all, we give growth order estimates for the semigroup, applicable also in the case of decaying populations. Secondly, we study asymptotic behavior of the semigroup in the case of approximately constant population size. More specifically, we formulate conditions for the asymptotic stability of the semigroup in the case in which the average number of viable daughters per mitosis equals one. To this end we use methods developed by K. Pichór and R. Rudnicki. |