Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
In this paper, a fractional-order version of a chaotic circuit made simply of two non-idealized components operating at high frequency is presented. The fractional-order version of the Hopf bifurcation is found when the bias voltage source and the fractional-order of the system increase. Using Adams–Bashforth–Moulton predictor–corrector scheme, dynamic behaviors are displayed in two complementary types of stability diagrams, namely the two-parameter Lyapunov exponents and the isospike diagrams. The latest being a more fruitful type of stability diagrams based on counting the number of spikes contained in one period of the periodic oscillations. These two complementary types of stability diagrams are reported for the first time in the fractional-order dynamical systems. Furthermore, a new fractional-order adaptive sliding mode controller using a reduced number of control signals was built for the stabilization of a fractional-order complex dynamical network. Two examples are shown on a fractional-order complex dynamical network where the nodes are made of fractional-order two-component circuits. Firstly, we consider an ideal channel, and secondly, a non ideal one. In each case, increasing of the coupling strength leads to the phase transition in the fractional-order complex network.