Fractional-order two-component oscillator: stability and network synchronization using a reduced number of control signals
Artykuł w czasopiśmie
MNiSW
25
Lista A
Status: | |
Autorzy: | Kengne Romanic , Tchitnga Robert , Litak Grzegorz, Kammogne Soup Tewa Alain , Fomethe Anaclet , Li Chunlai |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2018 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 304 |
Wolumen/Tom: | 91 |
Strony: | 1 - 19 |
Impact Factor: | 1,44 |
Web of Science® Times Cited: | 6 |
Scopus® Cytowania: | 7 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 5 grudnia 2018 |
Abstrakty: | angielski |
In this paper, a fractional-order version of a chaotic circuit made simply of two non-idealized components operating at high frequency is presented. The fractional-order version of the Hopf bifurcation is found when the bias voltage source and the fractional-order of the system increase. Using Adams–Bashforth–Moulton predictor–corrector scheme, dynamic behaviors are displayed in two complementary types of stability diagrams, namely the two-parameter Lyapunov exponents and the isospike diagrams. The latest being a more fruitful type of stability diagrams based on counting the number of spikes contained in one period of the periodic oscillations. These two complementary types of stability diagrams are reported for the first time in the fractional-order dynamical systems. Furthermore, a new fractional-order adaptive sliding mode controller using a reduced number of control signals was built for the stabilization of a fractional-order complex dynamical network. Two examples are shown on a fractional-order complex dynamical network where the nodes are made of fractional-order two-component circuits. Firstly, we consider an ideal channel, and secondly, a non ideal one. In each case, increasing of the coupling strength leads to the phase transition in the fractional-order complex network. |