Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
The study reported in this paper employed Artificial Neural Networks (ANN) to predict the critical force of the buckling composite structures. The critical force depends upon various factors such as thickness, stacking sequence, etc. These factors have been identified in earlier studies by means of the Finite Elements Method (FEM). The critical force is affected by the above-mentioned factors. Various approaches have been applied in the course of the presented study. Apart from our FEM simulation, the ANN approach has been applied and the results were compared. The main contribution of these two approaches is the estimation of the critical force. The ANN model is trained to predict the critical force for different configurations of input variables.