Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza listy
Status:
Autorzy: Plechawska-Wójcik Małgorzata, Kaczorowska Monika, Michalik Bernadetta
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 252
Numer artykułu: 3010
Strony: 1 - 6
Web of Science® Times Cited: 1
Bazy: Web of Science
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: III International Conference of Computational Methods in Engineering Science (CMES’18)
Skrócona nazwa konferencji: CMES’18
URL serii konferencji: LINK
Termin konferencji: 22 listopada 2018 do 24 listopada 2018
Miasto konferencji: Kazimierz Dolny
Państwo konferencji: POLSKA
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 14 stycznia 2019
Abstrakty: angielski
The main goal of the paper is to perform a comparative accuracy analysis of the two-group classification of EEG data collected during the P300-based brain-computer interface tests. The brain-computer interface is a technology that allows establishing communication between a human brain and external devices. BCIs may be applied in medicine to improve the life of disabled people and as well for entertainment. The P300 is an event-related potential (ERP) appearing about 300 ms after the occurrence of the stimulus of visual, auditory or sensory nature. It is based on the phenomenon observed in anticipation for a target event among non-target events. The 21-channel 201 Mitsar amplifier was used during the experiment to store EEG data from seven electrodes placed on the dedicated cap. The study was conducted on a group of five persons using P300 scenario available in OpenVibe software. The experiment was based on three steps the classifier learning process, comparison and averaging of the obtained result and the final test of the classifier. The comparative analysis was performed with the application of two supervised classification methods: Linear Discriminant Analysis (LDA) and Multi-layer Perceptron (MLP). The preliminary data analysis, extraction and feature selection was performed prior to the classification.