Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Status:
Autorzy: Skublewska-Paszkowska Maria, Smołka Jakub
Wersja dokumentu: Drukowana
Arkusze wydawnicze: 0.5
Język: angielski
Strony: 277 - 284
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: polski
Image quality is an important aspect which should be taken into consideration during image processing. Quality can be measured using various methods, one of which is a perceptual Picture Quality Scale measure. It allows to verify whether the distortions in the image are visible to human beings and to what extent. Unfortunately this measure needs assessments from a group of observers. On their basis a single value is computed that corresponds to the amount of visual distortions present in image. Combining this measure together with a neural network allows to eliminate the need for human observers. This simplifies the assessment of image deformations and permits implementation that can be used for visualization of the distortions. For the purpose of the following paper the PQS measure was implemented with neural network resulting in a new measure called TOPQS. It was in turn used to obtain color local image visual distortions. They were computed using two images: the original and the processed one. Corresponding parts of these images were compared and the TOPQS value, which evaluates local distortions, was obtained. Once the images were analyzed local distortion maps were generated.