Tomographic image correction with noise reduction algorithms
Artykuł w czasopiśmie
MNiSW
5
spoza listy
Status: | |
Autorzy: | Kłosowski Grzegorz, Rymarczyk Tomasz, Kozłowski Edward |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2019 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Wolumen/Tom: | 252 |
Numer artykułu: | 09001 |
Strony: | 1 - 6 |
Web of Science® Times Cited: | 1 |
Bazy: | Web of Science |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | III International Conference of Computational Methods in Engineering Science (CMES’18) |
Skrócona nazwa konferencji: | CMES’18 |
URL serii konferencji: | LINK |
Termin konferencji: | 22 listopada 2018 do 24 listopada 2018 |
Miasto konferencji: | Kazimierz Dolny |
Państwo konferencji: | POLSKA |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 14 stycznia 2019 |
Abstrakty: | angielski |
This article presents an original approach to improve the results of tomographic reconstructions by denoising the input data, which affects output images improving. The algorithms used in the research are based on autoencoders and Elastic Net - both related to artificial intelligence or machine-learning developed controllers. Due to the reduction of unnecessary features and removal of mutually correlated input variables generated by the tomography electrodes, good quality reconstructions of tomographic images were obtained. The simulation experiments proved that the presented methods could be effective in improving the quality of reconstructed tomographic images. |