Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza listy
Status:
Autorzy: Kłosowski Grzegorz, Rymarczyk Tomasz, Kozłowski Edward
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Elektroniczna
Język: angielski
Wolumen/Tom: 252
Numer artykułu: 09001
Strony: 1 - 6
Web of Science® Times Cited: 1
Bazy: Web of Science
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: III International Conference of Computational Methods in Engineering Science (CMES’18)
Skrócona nazwa konferencji: CMES’18
URL serii konferencji: LINK
Termin konferencji: 22 listopada 2018 do 24 listopada 2018
Miasto konferencji: Kazimierz Dolny
Państwo konferencji: POLSKA
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 14 stycznia 2019
Abstrakty: angielski
This article presents an original approach to improve the results of tomographic reconstructions by denoising the input data, which affects output images improving. The algorithms used in the research are based on autoencoders and Elastic Net - both related to artificial intelligence or machine-learning developed controllers. Due to the reduction of unnecessary features and removal of mutually correlated input variables generated by the tomography electrodes, good quality reconstructions of tomographic images were obtained. The simulation experiments proved that the presented methods could be effective in improving the quality of reconstructed tomographic images.