Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
15
WOS
Status:
Autorzy: Rymarczyk Tomasz, Kłosowski Grzegorz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2018
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 210
Numer artykułu: 2016
Strony: 1 - 7
Web of Science® Times Cited: 2
Scopus® Cytowania: 2
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: 22nd International Conference on Circuits, Systems, Communications and Computers
Skrócona nazwa konferencji: CSCC 2018
URL serii konferencji: LINK
Termin konferencji: 14 lipca 2018 do 17 lipca 2018
Miasto konferencji: Majorca
Państwo konferencji: HISZPANIA
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 5 października 2018
Abstrakty: angielski
The article presents four selected methods of supervised machine learning, which can be successfully used in the tomography of flood embankments, walls, tanks, reactors and pipes. A comparison of the following methods was made: Artificial Neural Networks (ANN), Supported Vector Machine (SVM), K-Nearest Neighbour (KNN) and Multivariate Adaptive Regression Splines (MAR Splines). All analysed methods concerned regression problems. Thanks to performed analysis the differences expressed quantitatively were visualized with the use of indicators such as regression, error of mean square deviation, etc. Moreover, an innovative method of denoising tomographic output images with the use of convolutional auto-encoders was presented. Thanks to the use of a convolutional structure composed of two auto-encoders, a significant improvement in the quality of the output image from the ECT tomography was achieved.