Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2021
Status:
Warianty tytułu:
Nowatorskie metody neuronowej rekonstrukcji obrazów tomograficznych w eksploatacji Nowatorskie metody neuronowej rekonstrukcji obrazów tomograficznych w eksploatacji zbiornikowych reaktorów przemysłowych
Autorzy: Rymarczyk Tomasz, Kłosowski Grzegorz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Drukowana | Elektroniczna
Język: polski | angielski
Numer czasopisma: 2
Wolumen/Tom: 21
Strony: 261 - 267
Impact Factor: 1,525
Web of Science® Times Cited: 67
Scopus® Cytowania: 50
Bazy: Web of Science | Scopus | BazTech | Index Copernicus
Efekt badań statutowych TAK
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 30 czerwca 2019
Abstrakty: angielski | polski
The article presents an innovative concept of improving the monitoring and optimization of industrial processes. The developed method is based on a system of many separately trained neural networks, in which each network generates a single point of the output image. Thanks to the elastic net method, the implemented algorithm reduces the correlated and irrelevant variables from the input measurement vector, making it more resistant to the phenomenon of data noises. The advantage of the described solution over known non-invasive methods is to obtain a higher resolution of images dynamically appearing inside the reactor of artifacts (crystals or gas bubbles), which essentially contributes to the early detection of hazards and problems associated with the operation of industrial systems, and thus increases the efficiency of chemical process control.
W artykule przedstawiono nowatorską koncepcję usprawnienia monitoringu i optymalizacji procesów przemysłowych. Opracowana metoda bazuje na systemie osobno wytrenowanych wielu sieci neuronowych, w którym każda sieć generuje pojedynczy punkt obrazu wyjściowego. Dzięki zastosowaniu metody elastic net zaimplementowany algorytm redukuje z wejściowego wektora pomiarowego zmienne skorelowane i nieistotne, czyniąc go bardziej odpornym na zjawisko zaszumienia danych. Przewagą opisywanego rozwiązania nad znanymi metodami nieinwazyjnymi jest uzyskanie wyższej rozdzielczości obrazów dynamicznie pojawiających się wewnątrz reaktora artefaktów (kryształów lub pęcherzy gazowych), co zasadniczo przyczynia się do wczesnego wykrycia zagrożeń i problemów związanych z eksploatacją systemów przemysłowych, a tym samym zwiększa efektywność sterowania procesami chemicznymi.