Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
Issues related to monitoring and detection of an unexpected or hidden malfunction in
complex technical systems become more important since the complexity of technical installations
grows and the remote installations, without human supervision are widely used in many branches
of industry. In the proposed solution we use detailed information on electricity consumption
provided by smart energy metering technologies for monitoring and anomalies detection purposes.
As the data source, we use the teletechnical installations of the telco operator network, which consists of several hundred installations of various types, each created from many standardized components like power supply, battery, air conditioner, transmitter, etc. We build individual energy consumption model of each analyzed facility, which reflects daily cycles, weekly, monthly and seasonal fluctuations. For our simulations, we use the Particle Swarm Optimization method,
which allows us to parameterize the model and estimate the expected energy consumption rate. The results of simulations show very good convergence with measurement data and allow for real-time malfunction detection