Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
100
Lista 2021
Status:
Autorzy: Rymarczyk Tomasz, Kłosowski Grzegorz, Kozłowski Edward, Tchórzewski Paweł
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 7
Wolumen/Tom: 19
Numer artykułu: 1521
Strony: 1 - 23
Web of Science® Times Cited: 60
Scopus® Cytowania: 65
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 28 marca 2019
Abstrakty: angielski
The main goal of this work was to compare the selected machine learning methods with the classic deterministic method in the industrial field of electrical impedance tomography. The research focused on the development and comparison of algorithms and models for the analysis and reconstruction of data using electrical tomography. The novelty was the use of original machine learning algorithms. Their characteristic feature is the use of many separately trained subsystems, each of which generates a single pixel of the output image. Artificial Neural Network (ANN), LARS and Elastic net methods were used to solve the inverse problem. These algorithms have been modified by a corresponding increase in equations (multiply) for electrical impedance tomography using the finite element method grid. The Gauss-Newton method was used as a reference to machine learning methods. The algorithms were trained using learning data obtained through computer simulation based on real models. The results of the experiments showed that in the considered cases the best quality of reconstructions was achieved by ANN. At the same time, ANN was the slowest in terms of both the training process and the speed of image generation. Other machine learning methods were comparable with the deterministic Gauss-Newton method and with each other.