The construction of the feature vector in the diagnosis of sarcoidosis based on the fractal analysis of CT chest images
Artykuł w czasopiśmie
MNiSW
20
Lista 2021
Status: | |
Autorzy: | Omiotek Zbigniew, Prokop Paweł |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2019 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 2 |
Wolumen/Tom: | 9 |
Strony: | 16 - 23 |
Scopus® Cytowania: | 6 |
Bazy: | Scopus | BazTech | Index Copernicus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 21 czerwca 2019 |
Abstrakty: | angielski |
CT images corresponding to the cross-sections of the patients’ upper torso were analysed. The data set included the healthy class and 3 classes of cases affected by sarcoidosis. It was a state involving only the trachea – Sick(1), a state including trachea and lung parenchyma – Sick(2) and a state involving only lung parenchyma – Sick(3). Based on a fractal analysis and a feature selection by linear stepwise regression, 4 descriptors were obtained, which were later used in the classification process. These were 2 fractal dimensions calculated by the variation and box counting methods, lacunarity calculated also with the box counting method and the intercept parameter calculated using the power spectral density method. Two descriptors were obtained as a result of a gray image analysis, and 2 more were the effect of a binary image analysis. The effectiveness of the descriptors was verified using 8 popular classification methods. In the process of classifier testing, the overall classification accuracy was 90.97%, and the healthy cases were detected with the accuracy of 100%. In turn, the accuracy of recognition of the sick cases was: Sick(1) – 92.50%, Sick(2) – 87.50% and Sick(3) – 90.00%. In the classification process, the best results were obtained with the support vector machine and the naive Bayes classifier. The results of the research have shown the high efficiency of a fractal analysis as a tool for the feature vector extraction in the computer aided diagnosis of sarcoidosis. |