Study of flexible couplings non-linear dynamics using bond graphs
Artykuł w czasopiśmie
MNiSW
70
Lista 2021
Status: | |
Autorzy: | Margielewicz Jerzy, Opasiak Tadeusz, Gąska Damian, Litak Grzegorz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2019 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 2 |
Wolumen/Tom: | 83 |
Strony: | 317 - 323 |
Web of Science® Times Cited: | 8 |
Scopus® Cytowania: | 9 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 22 maja 2019 |
Abstrakty: | angielski |
The aim of this work is to model the dynamics of flexible couplings. On the basis of a non-linear mathematical model solved by bond graph, the ranges of excitation frequency were determined, in which the movement of the couplings is chaotic. For three couplings, the 3D distributions of the largest Lyapunov exponent and correlation dimension diagram (CDD) were plotted. The proposed diagram (CDD) illustrates how the geometric structure of the attractor changes when the conditions of excitation change. The classic Poincare cross-section, completed by us with the density of points distribution, significantly enhances information about geometrical structures of strange attractors. It has been shown that in relation to large ranges of changes in the control parameter, the geometric structure of the strange attractor is stretched and curved. The areas with the highest densification of the Poincaré cross section are most often located in places where the chaotic attractor is curved. |