Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Lista 2021
Status:
Warianty tytułu:
Porównanie wpływu standaryzacji i normalizacji danych na skuteczność klasyfikacji tekstury tkanki gąbczastej kręgosłupa
Autorzy: Dzierżak Róża
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 3
Wolumen/Tom: 9
Strony: 66 - 69
Scopus® Cytowania: 14
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 26 września 2019
Abstrakty: angielski | polski
The aim of this article was to compare the influence of the data pre-processing methods – normalization and standardization – on the results of the classification of spongy tissue images. Four hundred CT images of the spine (L1 vertebra) were used for the analysis. The images were obtained from fifty healthy patients and fifty patients with diagnosed with osteoporosis. The samples of tissue (50×50 pixels) were subjected to a texture analysis to obtain descriptors of features based on a histogram of grey levels, gradient, run length matrix, co-occurrence matrix, autoregressive model and wavelet transform. The obtained results were set in the importance ranking (from the most important to the least important), and the first fifty features were used for further experiments. These data were normalized and standardized and then classified using five different methods: naive Bayes classifier, support vector machine, multilayer perceptrons, random forest and classification via regression. The best results were obtained for standardized data and classified by using multilayer perceptrons. This algorithm allowed for obtaining high accuracy of classification at the level of 94.25%
Celem niniejszego artykułu było porównanie wpływu metod wstępnego przetwarzania danych - normalizacji i standaryzacji - na wyniki klasyfikacji obrazów tkanki gąbczastej. Do analiz wykorzystano czterysta obrazów tomografii komputerowej kręgosłupa (kręg L1). Obrazy pochodziły od pięćdzisięciu zdrowych pacjentów orazpięćdziesięciu pacjentów ze zdiagnozowaną osteoporozą. Uzyskane próbki tkanki (50×50 pikseli) poddano analizie tekstury w wyniku czego otrzymano deskryptory cech oparte na histogramie p oziomów szarości, macierzy gradientu, macierzy RL, macierzy zdarzeń, modelu autoregresji i transformacie falkowej. Otrzymane wyniki ustawiono w rankingu ważności (od najistotniejszej do najmniej ważnej), a pięćdziesiąt pierwszych cech wykorzystano do dalszych eksperymentów. Dane zostały poddane normalizacji oraz standaryzacji, a następnie klasyfikowane przy użyciu pięciu różnych metod: naiwny klasyfikator Bayesa, maszyna wektorów wspierających, wielowarstwowe perceptrony, las losowy oraz klasyfikacji poprzez regresje. Najlepsze wyniki uzyskano dla danych na których przeprowadzono standaryzacje i poddano klasyfikacji za pomocą wielowarstwowych perceptronów. Taki algorytm postępowania pozwolił na uzyskanie wysokiej skuteczności klasyfikacji na poziomie 94,25%