Vital signs monitoring using fuzzy logic rules
Fragment książki (Materiały konferencyjne)
MNiSW
15
WOS
Status: | |
Autorzy: | Khorozov O., Krak Iurii V., Kasianiuk Veda S., Szatkowska Małgorzata, Begaliyeva Kalamkas |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Arkusze wydawnicze: | 0,5 |
Język: | angielski |
Strony: | 1071 - 1076 |
Web of Science® Times Cited: | 1 |
Scopus® Cytowania: | 1 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018 |
Skrócona nazwa konferencji: | XLII SPIE-IEEE-PSP 2018 |
URL serii konferencji: | LINK |
Termin konferencji: | 26 maja 2019 do 4 czerwca 2019 |
Miasto konferencji: | Wilga |
Państwo konferencji: | POLSKA |
Publikacja OA: | NIE |
Abstrakty: | angielski |
The methods of machine learning for real-time detection of abnormal values of the patient's vital signs are considered. The aim is to assess the risk of the disease with worsening of the patient's condition. The system is designed to monitor patients using expert assessments that are included in fuzzy logic rules to compare patient vitals signs with disease risk assessment. Deviation of values from the norm is identified as an "abnormal" class in order to determine the reasons for the worsening of the patient's condition. The integrated platform "m-Health" system for decision making with feedback control allows the patient to be mobile and their vital signs are mapping in the current mode |