Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Poziom I
Status:
Autorzy: Khorozovn O. A., Krak Iurii V., Kulias A. I., Kasianiuk Veda S., Wójcik Waldemar, Tergeusizova Aliya
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 237 - 245
Scopus® Cytowania: 5
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
The methods of machine learning for real-time detection of abnormal values of the patient’s vital signs are considered. The aim is to assess the risk of the disease with worsening of the patient’s condition. The system is designed to monitor patients using expert assessments that are included in fuzzy logic rules to compare patient vital signs with disease risk assessment. Deviation of values from the norm is identified as an “abnormal” class in order to determine the reasons for the worsening of the patient’s condition. The integrated platform “m-Health” system for decision making with feedback control allows the patient to be mobile and their vital signs are mapped in the current mode