Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

Status:
Autorzy: Bobrowski Adam, Kimmel Marek, Kubalińska Małgorzata
Rok wydania: 2010
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 6
Wolumen/Tom: 33
Strony: 713 - 732
Web of Science® Times Cited: 0
Scopus® Cytowania: 2
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Kingman's coalescent is among the most fertile concepts in mathematical population genetics. However, it only approximates the exact coalescent process associated with the Wright-Fisher model, in which the ancestry of a sample does not have to be a binary tree. The distinction between the approximate and exact coalescent becomes important when population size is small and time has to be measured in discrete units (generations). In the present paper, we explore the exact coalescent, with mutations following the infinitely many sites model. The methods used involve random point processes and generating functionals. This allows obtaining joint distributions of segregating sites in arbitrary intervals or collections of intervals, and generally in arbitrary Borel subsets of two or more chromosomes. Using this framework it is possible to find the moments of the numbers of segregating sites on pairs of chromosomes, as well as the moments of the average of the number of pairwise differences, in the form that is more general than usually. In addition, we demonstrate limit properties of the first two moments under a range of demographic scenarios, including different patterns of population growth. This latter part complements results obtained earlier for Kingman's coalescent. Finally, we discuss various applications, including the analysis of fluctuation experiments, from which mutation rates of biological cells can be inferred.