Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2021
Status:
Autorzy: Jonak Kamil, Syta Arkadiusz, Karakuła-Juchnowicz Hanna, Krukow Paweł
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2020
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 6
Wolumen/Tom: 10
Numer artykułu: 380
Strony: 1 - 12
Impact Factor: 3,394
Web of Science® Times Cited: 2
Scopus® Cytowania: 4
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 16 czerwca 2020
Abstrakty: angielski
Background. An electroencephalogram (EEG) is a simple and widely used assessment tool that allows one to analyze the bioelectric activity of the brain. As a result, one can observe brain waves with different frequencies and amplitudes that correspond to the temporary synchronization of different parts of the brain. Synchronization patterns may be changed by almost any type of pathological conditions, such as psychiatric diseases and structural abnormalities of the brain tissue. In various neuropsychiatric disorders, the coordination of cortical activity may be decreased or enhanced as a result of neurobiological compensatory mechanisms. Methods. In this paper, we analyzed the EEG signals in resting-state condition, with reference to three patients with a similar set of psychopathological symptoms typical for the first psychotic episode, but with different functional and structural neural basis of the disease. Additionally, those patients were compared with a demographically matched healthy individual. We used the non-linear method of time series analysis based on the recurrences of states, to verify whether functional connectivity configurations assessed with recurrence method will qualitatively distinguish patients from a healthy subject, but also differentiate patients from each other. Results. Obtained results confirmed that the connectivity architecture mapped with the recurrence analysis substantially differentiated all participants from each other. An applied analysis additionally showed the specificity of cortical desynchronization and over-synchronization matched to the psychiatric or neurological basis of the disease. Despite this encouraging finding, group-oriented studies are needed to corroborate our qualitative results, based only on a series of clinical case studies.