Optical-frequency gas flow meter on the basis of transistor structures with negative differential resistance
Fragment książki (Rozdział monografii pokonferencyjnej)
MNiSW
20
Poziom I
Status: | |
Autorzy: | Osadchuk Alexander V., Osadchuk Vladimir S., Osadchuk Iaroslav A., Titova Natalia V., Pinaeva Olga. Yu, Kisała Piotr, Rakhmetullina Saule, Kalizhanova Aliya, Azeshova Zhanar |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Strony: | 74 - 81 |
Web of Science® Times Cited: | 0 |
Scopus® Cytowania: | 1 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | 19th Conference on Optical Fibers and Their Applications |
Skrócona nazwa konferencji: | OFTA 2020 |
URL serii konferencji: | LINK |
Termin konferencji: | 27 stycznia 2020 do 31 stycznia 2020 |
Miasto konferencji: | Białowieża |
Państwo konferencji: | POLSKA |
Publikacja OA: | NIE |
Abstrakty: | angielski |
The article investigated the optical-frequency gas flow meter based on a transistor structure with negative differential resistance (NDR). A schematic diagram and design of an optical-frequency gas flow transducer that operates in the microwave range (0.85 to 1.5 GHz), which consists of a bipolar and field-effect transistor with a Schottky barrier, is proposed as a photosensitive element using a photoresistor. A mathematical model of an optical-frequency gas flow meter based on a transistor structure with negative differential resistance has been developed, which allows one to obtain the main characteristics of the transducer in a wide frequency range. Theoretically and experimentally, the possibility of controlling both the reactive component and the negative differential resistance from changes in control voltage and power is shown, it extends the functionality of optical transducers and allows linearization of the conversion function within (0.1 - 0.2)%. Experimental studies have shown that the greatest sensitivity and linearity of the conversion function of an opticalfrequency gas flow transducer lies in the range from 3 V to 3.5 V. The sensitivity of the developed optical-frequency gas flow transducer based on a transistor structure with NDR is 146 kHz/liter/hour, and the measurement error is ± 1.5%. |