Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements
Artykuł w czasopiśmie
MNiSW
140
Lista 2021
Status: | |
Autorzy: | Machrowska Anna, Szabelski Jakub, Karpiński Robert, Krakowski Przemysław, Jonak Józef, Jonak Kamil |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2020 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 23 |
Wolumen/Tom: | 13 |
Numer artykułu: | 5419 |
Strony: | 1 - 23 |
Impact Factor: | 3,623 |
Web of Science® Times Cited: | 19 |
Scopus® Cytowania: | 25 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This research project was financed within the framework of the Lublin University of Technology-Regional Excellence Initiative project, funded by the Polish Ministry of Science and Higher Education (contract no.030/RID/2018/19). |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 28 listopada 2020 |
Abstrakty: | angielski |
The purpose of the study was to test the usefulness of deep learning artificial neural networks and statistical modeling in predicting the strength of bone cements with defects. The defects are related to the introduction of admixtures, such as blood or saline, as contaminants into the cement at the preparation stage. Due to the wide range of applications of deep learning, among others in speech recognition, bioinformation processing, and medication design, the extent was checked to which it is possible to obtain information related to the prediction of the compressive strength of bone cements. Development and improvement of deep learning network (DLN) algorithms and statistical modeling in the analysis of changes in the mechanical parameters of the tested materials will enable determining an acceptable margin of error during surgery or cement preparation in relation to the expected strength of the material used to fill bone cavities. The use of the abovementioned computer methods may, therefore, play a significant role in the initial qualitative assessment of the effects of procedures and, thus, mitigation of errors resulting in failure to maintain the required mechanical parameters and patient dissatisfaction. |