Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
70
Lista 2021
Status:
Warianty tytułu:
Wpływ ekstrakcji cech na poprawę jakości sieci LSTM w klasyfikacji sygnału EKG
Autorzy: Kłosowski Grzegorz, Rymarczyk Tomasz, Wójcik Dariusz, Cieplak Tomasz, Adamkiewicz Przemysław
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2020
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 12
Wolumen/Tom: 96
Strony: 194 - 197
Web of Science® Times Cited: 1
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus | EBSCO | INSPEC | BazTech
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 1 grudnia 2020
Abstrakty: angielski | polski
This article focuses on the extraction of features extracted from ECG measurement signals to improve the quality of LSTM network operation. Two features were distinguished from each individual sequence of ECG signals: instantaneous frequency (IF) and spectral entropy (SE). Both of these features are extracted from ECG signals using short-time Fourier transform. The applied approach enables the conversion of original measurement sequences into spectral images, from which IF and SE coefficients are then generated. As a result of the research, it was found that feature extraction significantly improves ECG signal classification both in terms of forecasting accuracy and in terms of network learning speed.
W niniejszym artykule skupiono się na ekstrakcji cech wyodrębnionych z sygnałów pomiarowych EKG w celu poprawy jakości działania sieci LSTM. Z każdej indywidualnej sekwencji sygnałów EKG wyróżniono dwie cechy: częstotliwość chwilową (IF) i entropię widmową (SE). Obie te cechy są wyodrębniane z sygnałów EKG przy użyciu krótkotrwałej transformaty Fouriera. Zastosowane podejście umożliwia konwersję oryginalnych sekwencji pomiarowych na obrazy widmowe, z których następnie generowane są współczynniki IF i SE. W wyniku badań stwierdzono, że ekstrakcja cech znacząco poprawia klasyfikację sygnału EKG zarówno pod względem dokładności prognozowania, jak i szybkości uczenia się siec).