Performance Comparison of Machine Learning Algorithms for Predictive Maintenance
Artykuł w czasopiśmie
MNiSW
20
Lista 2021
Status: | |
Warianty tytułu: |
Porównanie skuteczności algorytmów uczenia maszynowego dla konserwacji predykcyjnej
|
Autorzy: | Gęca Jakub |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2020 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 3 |
Strony: | 32 - 35 |
Scopus® Cytowania: | 4 |
Bazy: | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 30 września 2020 |
Abstrakty: | angielski | polski |
The consequences of failures and unscheduled maintenance are the reasons why engineers have been trying to increase the reliability of industrial equipment for years. In modern solutions, predictive maintenance is a frequently used method. It allows to forecast failures and alert about their possibility. This paper presents a summary of the machine learning algorithms that can be used in predictive maintenance and comparison of their performance. The analysis was made on the basis of data set from Microsoft Azure AI Gallery. The paper presents a comprehensive approach to the issue including feature engineering, preprocessing, dimensionalit y reduction techniques, as well as tuning of model parameters in order to obtain the highest possible performance. The conducted research allowed to conclude that in the analysed case , the best algorithm achieved 99.92% accuracy out of over 122 thousand test data records. In conclusion, predictive maintenance based on machine learning represents the future of machine reliability in industry | |
Skutki związane z awariami oraz niezaplanowaną konserwacją to powody, dla których od lat inżynierowie próbują zwiększyć niezawodność osprzętu przemysłowego. W nowoczesnych rozwiązaniach obok tradycyjnych metod stosowana jest również tzw. konserwacja predykcyjna, która pozwala przewidywać awarie i alarmować o możliwości ich powstawania. W niniejszej pracy przedstawiono zestawienie algorytmów uczenia maszynowego, które można zastosować w konserwacji predykcyjnej oraz porównanie ich skuteczności. Analizy dokonano na podstawie zbioru danych Azure AI Gallery udostępnionych przez firmę Microsoft. Praca przedstawia kompleksowe podejście do analizowanego zagadnienia uwzględniające wydobywanie cech charakterystycznych, wstępne przygotowanie danych, zastosowanie technik redukcji wymiarowości, a także dostrajanie parametrów poszczególnych modeli w celu uzyskania najwyższej możliwej skuteczności. Przeprowadzone badania pozwoliły wskazać najlepszy algorytm, który uzyskał dokładność na poziomie 99,92%, spośród ponad 122 tys. rekordów danych testowych. Na podstawie tego można stwierdzić, że konserwacja predykcyjna prowadzona w oparciu o uczenie maszynowe stanowi przyszłość w zakresie podniesienia niezawodności maszyn w przemyśle |