Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2021
Status:
Autorzy: Kłosowski Grzegorz, Kulisz Monika, Lipski Jerzy, Maj Michał, Białek Ryszard
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2021
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: Special Issue 2
Wolumen/Tom: 24
Strony: 253 - 263
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 15 czerwca 2021
Abstrakty: angielski
Purpose: The aim of the article is to develop an algorithm for classifying cracks in the analyzed images using modern methods of deep machine learning and transfer learning based on pretrained convolutional neural network - Inception-ResNet-v2. Design/Methodology/Approach: Transfer learning based on the pretrained convolutional neural network was used to categorize the images. The fully conected layer of the Inception-ResNet-v2 network has been modified. The last layer was trained using a two-class (binary) linear SVM (Support Vector Machine). In total, 20,000 training cases (images) were used to train the fully connected layer within transfer learning process. The research analyzed the possibility of using the deep neural networks for quick and fully automatic identification of cracks / defects on the surface of analyzed parts. Findings: The results indicate that pretrained convolutional neural network using SVM to train a fully connected layer is a very effective solution for visual crack / fault detection. In the analyzed model, a positive classification was obtained at the level of 99.89%. Practical Implications: The model presented in the article can be used in quality control carried out by process monitoring. An effective model for identifying defective parts can be used in both logistics and production processes. Originality/Value: A novelty is the use of a freely available, deep neural network trained to classify 1000 categories of various images for binary categorization of faults (cracks). The algorithm was adjusted by replacing the primary, 1000-output fully connected layer in the Inception-ResNet-v2 network with a binary layer (2 categories). The fully connected layer has been trained using the classification version of the popular SVM learner, but thanks to the combination of this layer with the sophisticated fearure extraction ability of the pre-trained Inception-ResNet-v2 deep network, the resulting predictive model enables the classification of defects with a very high level of accuracy.