On the Improvement of Eye Tracking-Based Cognitive Workload Estimation Using Aggregation Functions
Artykuł w czasopiśmie
MNiSW
100
Lista 2021
Status: | |
Autorzy: | Kaczorowska Monika, Karczmarek Paweł, Plechawska-Wójcik Małgorzata, Tokovarov Mikhail |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2021 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 13 |
Wolumen/Tom: | 21 |
Numer artykułu: | 4542 |
Strony: | 1 - 13 |
Impact Factor: | 3,847 |
Web of Science® Times Cited: | 4 |
Scopus® Cytowania: | 3 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 2 lipca 2021 |
Abstrakty: | angielski |
Cognitive workload, being a quantitative measure of mental effort, draws significant interest of researchers, as it allows to monitor the state of mental fatigue. Estimation of cognitive workload becomes especially important for job positions requiring outstanding engagement and responsibility, e.g., air-traffic dispatchers, pilots, car or train drivers. Cognitive workload estimation finds its applications also in the field of education material preparation. It allows to monitor the difficulty degree for specific tasks enabling to adjust the level of education materials to typical abilities of students. In this study, we present the results of research conducted with the goal of examining the influence of various fuzzy or non-fuzzy aggregation functions upon the quality of cognitive workload estimation. Various classic machine learning models were successfully applied to the problem. The results of extensive in-depth experiments with over 2000 aggregation operators shows the applicability of the approach based on the aggregation functions. Moreover, the approach based on aggregation process allows for further improvement of classification results. A wide range of aggregation functions is considered and the results suggest that the combination of classical machine learning models and aggregation methods allows to achieve high quality of cognitive workload level recognition preserving low computational cost. |