Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Lista 2021
Status:
Warianty tytułu:
Sieci neuronowe z keras w diagnostyce zmian skórnych
Autorzy: Michalska-Ciekańska Magdalena
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 1
Wolumen/Tom: 12
Strony: 40 - 43
Scopus® Cytowania: 0
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 31 marca 2022
Abstrakty: angielski | polski
Melanoma is currently one of the most dangerous skin diseases, in addition many others appear in the population. Scientists are developing techniques for early non-invasive skin lesions diagnosis from dermatoscopic images, for this purpose neural networks are increasingly used. Many tools are being developed to allow for faster implementation of the network, including the Keras package. The article presents selected methods of diagnosing skin diseases, including the process of classification, features selection, extracting the skin lesion from the whole image.The described methods have been implemented using deep neural networks available in the Keras package. The article draws attention to the effectiveness, specificity, accuracyof classification based on available data sets, attention was paid to tools that allow for more effective operation of algorithms.
Melanoma jest obecnie jedną z najbardziej niebezpiecznych chorób skóry, oprócz niej pojawia się w populacji wiele innych. Naukowcy rozwijają techniki wczesnego nieinwazyjnego diagnozowania z mian skórnych z obrazów dermatoskopowych, w tym celu coraz częściej wykorzystywane są sieci neuronowe. Powstaje wiele narzędzi pozwaląjących na szybszą implementację sieci należy do niej pakiet Keras. W artykule przedstawiono wybrane metody diagnostyki chorób skóry, należy do nich proces klasyfikacji, selekcji cech, wyodrębnienia zmiany skórnej z całego obrazu. Opisane metody zostały zaimplementowane za pomocą dostępnych w pakiecie Keras głębokich sieci neuronowych. W artykule zwrócono uwagę na skuteczność, specyficzność, dokładność klasyfikacji w oparciu o dostępne zestawy danych, zwrócono uwagę na narzędzi pozwalające na efektywniejsze działanie algorytmów.