Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
S. Nyallang Nyamsi acknowledges the financial incentive from the Department of Science
and Technology (DST) in South Africa (project KP6-SO1). I. Tolj and S. Nyallang Nyamsi acknowledge
financial support from EU Horizon 2020/RISE project “Hydrogen fueled utility vehicles and their
support systems utilizing metal hydrides HYDRIDE4MOBILITY” (project number: 778307).
The popularity of using phase change materials (PCMs) for heat storage and recovery of
metal hydrides’ reaction has grown tremendously. However, a fundamental study of the coupling of
such a system with a low-temperature PEM (polymer electrolyte membrane) fuel cell is still lacking.
This work presents a numerical investigation of the dehydrogenation performance of a metal hydride
reactor (MHR)-PCM system coupled with a fuel cell. It is shown that to supply the fuel cell with a
constant H2 flow rate, the PCM properties need to be in an optimized range. The effects of some
design parameters (PCM freezing point, the initial desorption temperature, the nature and the size of
the PCM) on the dehydrogenation performance of MHR-PCM system are discussed in detail. The
results showed that the MHR-PCM could supply hydrogen at 12 NL/min only for 20 min maximum
due to the significant endothermic effect occurring in the MHR. However, reducing the requested
H2 flowrate to 5.5 NL/min, the hydrogen desorption to a fuel cell is prolonged to 79 min. Moreover,
this system can accommodate different PCMs such as paraffin and salt hydrates for comparable
performance. This study demonstrates the ability of MHR-PCM systems to be used as range extenders
in light-duty fuel cell vehicles.