Classification of Companies Based on Fuzzy Levels of Innovation
Fragment książki (Materiały konferencyjne)
MNiSW
140
konferencja
Status: | |
Autorzy: | Kiersztyn Adam, Bis Jakub, Bojar Ewa, Bojar Matylda, Żelazna Anna |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Strony: | 1 - 5 |
Web of Science® Times Cited: | 0 |
Scopus® Cytowania: | 1 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | The work was co-financed by the Lublin University of Technology Scientific Fund: FD-20/IT-3/002. |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | IEEE World Congress on Computational Intelligence 2022 ; IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2022 |
Skrócona nazwa konferencji: | IEEE WCCI 2022 ; FUZZ-IEEE 2022 |
URL serii konferencji: | LINK |
Termin konferencji: | 18 lipca 2022 do 23 lipca 2022 |
Miasto konferencji: | Padwa |
Państwo konferencji: | WŁOCHY |
Publikacja OA: | NIE |
Abstrakty: | angielski |
Startups are defined in the literature as newly established enterprises that are looking for a chance for further dynamic development. In the Polish economy in recent years, we have witnessed a significant increase in the number of startups, which allows us to use the potential of Polish entrepreneurship for economic development. Startups are a key factor in many innovative economies. Young companies contribute to the dynamic growth of the economy. More boldly than mature entities, they reach for innovative technological solutions, producing digital products and services under conditions of increased risk. Startups can develop based on proven methodologies, have many opportunities to raise capital and use many sources of financing, but not all of them take advantage of the opportunities available on the market.In the proposed innovative approach, we focus on data from entrepreneurs themselves. The results of surveys conducted among a large group of enterprises, including startups supported by startup platforms, allowed for the development of fuzzy classification models. The use of fuzzy sets to determine the degree of development of a startup based on the degrees of membership to individual classifiers allowed for the achievement of a very high efficiency of the model. Moreover, the application of the classic forms of the membership function poses no problems with the correct interpretation of the obtained results by people who are not experts in the use of fuzzy sets. The obtained results indicate the enormous potential of interdisciplinary research and the promotion of the idea of using fuzzy sets in economics and management sciences. |