On the Detection of Anomalies with the Use of Choquet Integral and Their Interpretability in Motion Capture Data
Fragment książki (Materiały konferencyjne)
MNiSW
140
konferencja
Status: | |
Autorzy: | Dolecki Michał, Karczmarek Paweł, Gałka Łukasz, Zawadka Magdalena, Smołka Jakub, Skublewska-Paszkowska Maria, Łukasik Edyta, Powroźnik Paweł, Gawda Piotr, Czerwiński Dariusz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Strony: | 1 - 9 |
Web of Science® Times Cited: | 1 |
Scopus® Cytowania: | 1 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | IEEE World Congress on Computational Intelligence 2022 ; IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2022 |
Skrócona nazwa konferencji: | IEEE WCCI 2022 ; FUZZ-IEEE 2022 |
URL serii konferencji: | LINK |
Termin konferencji: | 18 lipca 2022 do 23 września 2022 |
Miasto konferencji: | Padwa |
Państwo konferencji: | WŁOCHY |
Publikacja OA: | NIE |
Abstrakty: | angielski |
Modern information technologies allow for the collection, processing, and data analysis. A very important role of these systems can be observed in the analysis of medical records, particularly in the analysis of motion capture data. Detection and interpretation of data collected from movement recording devices enables for a fast diagnosis, e.g. disease or misfunction. Moreover, it can be assistive in the introduction of appropriate treatment or rehabilitation. Anomaly detection methods play a key role in the evaluation of this type of medical research results. In this study, we introduce an innovative approach based on the aggregation of the results of eleven anomaly detection classifiers outcomes with the fuzzy Choquet integral. Furthermore, the results of numerical experiments are confronted with the assessments of the experts in medical field. The results show the great potential of our method in supporting the decision-making process based on the motion capture data analysis. Moreover, we have caught the differences between the expert's understanding of anomaly and the anomalies in data found by the modern machine learning methods. |