Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
140
konferencja
Status:
Autorzy: Kiersztyn Krystyna, Kiersztyn Adam
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 1 - 7
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus | IEEE Xplore
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: IEEE World Congress on Computational Intelligence 2022 ; IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2022
Skrócona nazwa konferencji: IEEE WCCI 2022 ; FUZZ-IEEE 2022
URL serii konferencji: LINK
Termin konferencji: 18 lipca 2022 do 23 lipca 2022
Miasto konferencji: Padwa
Państwo konferencji: WŁOCHY
Publikacja OA: NIE
Abstrakty: angielski
The problem of detecting outliers in data is a widely discussed issue. The sources of outliers vary and can come from system errors, or human mistakes. Due to the constantly increasing number of data for analysis, an effective tool for detecting outliers should be proposed. Therefore, in this study we present a method based on the use of the fuzzy three-sigma rule to detect outliers. The novelty of the described method is the use of the properties of fuzzy sets to replace the properties of the analyzed data with common statistical semantics. Due to the untypical approach consisting in an independent analysis of each dimension of the data set, a universal method was obtained, which operates regardless of the specificity of the analyzed data. Moreover, the appropriate aggregation of the membership degrees to the descriptors describing the type and strength of deviation from the norm makes it possible to look at the analyzed data from various angles. The high performance of the proposed novel approach was confirmed in numerical experiments.