Using a classification tree to identify seepage in flood embankments
Artykuł w czasopiśmie
MNiSW
70
Lista 2021
Status: | |
Warianty tytułu: |
Wykorzystanie drzewa klasyfikacyjnego do identyfikacji przesiąkania wałów przeciwpowodziowych
|
Autorzy: | Król Krzysztof, Rymarczyk Tomasz, Oleszek Michał, Bożek Piotr, Tchórzewski Paweł, Kozłowski Edward |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2022 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 1 |
Wolumen/Tom: | 98 |
Strony: | 111 - 114 |
Impact Factor: | 0,5 |
Web of Science® Times Cited: | 0 |
Scopus® Cytowania: | 1 |
Bazy: | Web of Science | Scopus | BazTech | EBSCO | INSPEC |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Otwarte czasopismo |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 31 stycznia 2022 |
Abstrakty: | angielski | polski |
The article presents a method of controlling infiltration in flood embankments by means of impedance tomography with the use of classification tree prediction. The analysis was performed using electrical impedance tomography and image reconstruction using machine learning methods, the results of the reconstruction were compared and various numerical models were used. The main advantage of the presented solution is the possibility of analyzing spatial data and high processing speed. The key parameters in electrical tomography are the speed of analysis and the accuracy of the reconstructed objects. The reconstruction algorithm is obtained by solving the inverse problem. Classification trees were used to obtain feedback on the degree of water permeability of the embankment. | |
Artykuł przedstawia metodę kontroli przesiąków w wałach przeciwpowodziowych za pomocą tomografii impedancyjnej z wykorzystaniem predykcji drzewa klasyfikacyjnego. Analizę przeprowadzono z użyciem elektrycznej tomografii impedancyjnej i rekonstrukcji obrazu z wykorzystaniem metod uczenia maszynowego, porównano wyniki rekonstrukcji i zastosowano różne modele numeryczne. Główną zaletą prezentowanego rozwiązania jest możliwość analizy danych przestrzennych oraz duża szybkość przetwarzania. Kluczowymi parametrami w tomografii elektrycznej są szybkość analizy i dokładność rekonstruowanych obiektów. Algorytm rekonstrukcji uzyskuje się poprzez rozwiązanie problemu odwrotnego. Drzewa klasyfikacyjne zostały wykorzystane do uzyskania informacji zwrotnej o stopniu przesiąkliwości nasypu. |